Термоядерный синтез вскоре может быть использован в энергетике. Термоядерный синтез в скором может быть использован для производства энергии. Фото.

Термоядерный синтез в скором может быть использован для производства энергии

Еще совсем недавно ученые считали, что термоядерный синтез невозможно использовать в энергетике в земных условиях. В какой-то момент исследования в этом направлении были сведены к минимуму. Однако 2022 году команде специалистов впервые удалось получить в результате ядерного синтеза больше энергии, чем было затрачено на сам синтез. Правда, такого результата удалось добиться в лабораторных условиях. Технология была далека от применения ее в промышленных масштабах. Но самое главное, что ее эффективность сравнительно невысокая. Однако недавнее исследование показало, что на самом деле она может быть более совершенной, чем считалось ранее, а значит она может быть использована в будущем в электростанциях.

Термоядерная энергия — в чем сложность технологии

Энергия выделяется в тот момент, когда ядра одних элементов (как правило легких вроде водорода), сливаются с ядрами других, более тяжелых элементов. Ядерный синтез, как известно, происходит в звездах, благодаря чему они представляют собой мощные источники энергии. Отличным примером тому является наше Солнце. Собственно говоря, благодаря термоядерной энергии существует жизнь на Земле.

Впервые о термоядерной энергии науке стало известно XX веке. Однако долгое время ученые были не уверены, можно ли воссоздать и контролировать термоядерный синтез в земных условиях. Дело в том, что в звездах существуют определенные условия — колоссальное давление и температура. Благодаря этим условиям ядра различных элементов начинают сливаться друг с другом. Но в лабораторных условиях воссоздать такую реакцию очень сложно.

Термоядерная энергия — в чем сложность технологии. Термоядерный синтез происходит в звездах. Фото.

Термоядерный синтез происходит в звездах

Но и это еще не все. Самое главное, что для обеспечения высокой температуры, необходимой для термоядерного синтеза, нужно затратить много энергии. Ранее все попытки приводили к тому, что энергии в результате термоядерного синтеза вырабатывалось меньше, чем было затрачено на создание необходимых условий. Поэтому в какой-то момент ученые даже посчитали, что в земных условиях получить положительный результат невозможно.

Прорыв в области термоядерного синтеза

Впервые исследователям удалось получить больше энергии, чем было затрачено на создание условий для термоядерного синтеза, в декабре 2022 года. Для этого была использована технология, именуемая инерционным синтезом. Мощные лазерные лучи направляли в капсулу (хольраум).

Внутри капсулы имеется тончайший слой из дейтерия и трития. Когда в капсулу направляются лучи, она их поглощает, а затем излучает обратно, но уже в виде рентгеновских лучей. При этом внешний слой капсулы взрывается, что приводит к сжатию атомного ядра то такой степени, что начинается термоядерный синтез.

Прорыв в области термоядерного синтеза. Принцип термоядерного синтеза. Фото.

Принцип термоядерного синтеза

Как сообщают исследователи, в ходе эксперимента они затратили 2,05 мегаджоуля для лазерного импульса, при этом в результате ядерного синтеза удалось получить 3,1 мегаджоуля термоядерной энергии. То есть удалось получить более 150% от того количества энергии, которая была затрачена на работу лазеров.

Можно ли использовать термоядерный синтез для производства энергии

Получение чистой энергии, то есть “прибыли” от термоядерного синтеза — это большой шаг в перед в этой области. Впервые ученые доказали, что это возможно в земных условиях. Однако показатель в 150% слишком мал для использования технологии в полноценных электростанциях. Чтобы имело смысл использовать технологию в промышленных целях, выход должен быть хотя бы в в десять раз больше, то есть не 150, а 1000%.

Но можно ли добиться такого результата при помощи термоядерной энергии? Недавнее исследования показало, что это возможно, о чем сообщает IftScince со ссылкой на несколько статей в научных журналах. Как сообщают авторы работы, термоядерный синтез привел к повторному нагреву. Благодаря этому после запуска термоядерного синтеза, на его поддержание потребуется гораздо меньше энергии, соответственно, количество “чистой” энергии возрастет, так как термоядерный синтез будет поддерживать сам себя.

Можно ли использовать термоядерный синтез для производства энергии. Хольраум, в который попадают лазеры. Фото.

Хольраум, в который попадают лазеры

Способность создавать стабильно горящую плазму является главным ключевым моментом для применения инерционного синтеза в реальных электростанциях. Если эту задачу удастся решить, технологию можно будет опробовать на практике в электростанции.

Переходите по ссылке на наш ДЗЕН КАНАЛ. Мы подготовили для вас множество интересных, захватывающих материалов, посвященных науке.

Напоследок напомним, что в Японии недавно был открыт крупнейший в настоящее время термоядерный реактор. Но еще более крупный реактор в настоящее время строится во Франции. Все они должны приблизить человечество к использованию термоядерного синтеза для получения энергии.

©